

Spatially telescoping measurements for efficient characterization of GW-SW interactions: Lucile Creek, Alaska

Colin Kikuchi

University of Arizona, Department of Hydrology and Water Resources

AWRA, Alaska Section 2011 Meeting

Groundwater – surface water interaction, conceptual

Regional hydrogeologic setting
Riparian hydrogeological type
Riparian flow path type

Figures from Dahl et. al., 2007

Lucile Creek area

A

Study Objectives

- **<u>Conceptual</u>** multi-scale typology of GW-SW interactions
- ✓ Regional hydrogeologic setting
- ✓ Riparian hydrogeological type
- ✓ Riparian flow path type
- <u>Quantify</u> fluxes from ground water at different measurement scales
 - Measured water fluxes: calibration targets for regional groundwater flow model
 - ✓ Spatial distribution of water fluxes

<u>Solution</u>: Adapt measurement campaign in spatially telescoping sequence

A The spatially telescoping approach

Catchment scale

Hydrogeologic cross-sectionsGeomorphic indices

Reach scale

Point scale

Differential discharge measurements
Chemical/isotopic composition of groundwater, stream water

Hydraulic gradients
Vertical water fluxes
Seepage meters
Temperature methods

Results: Hydrogeologic cross-sections

Results: Chemical/isotopic tracers

- Stream water moves toward 'unconfined aquifer ' end member
- 2. Stream water moves toward 'regional aquifer' end member

Increasing contribution of regional ground water

Results: Point vertical fluxes, physical methods

	LC11	LC6	LC3
Hydraulic gradient []	0.0048	0.094	0.008
Vertical flux [L m ⁻² d ⁻¹]	0.27	77.8	0.15

Point-scale verification of reachscale flux estimates

Results: Point vertical fluxes, temperature methods

Conclusions: Typology of GW-SW Interaction

 Confining layer (clayey till)
 Flow paths: Diffuse(Q_1)

 Groundwater body (meltwater sand)
 Overland (Q_2)

 *_______
 Riparian Area Aquifer
 Direct (Q_2)

 Drainage (Q_2)
 Drainage (Q_2)

Figures from Dahl et. al., 2007

Regional hydrogeologic setting: *A three-unit system* (unconfined aquifer, confining layer, confined aquifer)

Riparian
hydrogeological type: *Confined, evolving*towards unconfined
regional, unconfined local

Riparian flow path type:*Direct, evolving towards diffuse*

A.

Conclusions: Water fluxes, quantified

Ground water contributes

- 45-75% of total discharge measured at site LC11, near confluence with Meadow Creek (*based on differential discharge measurements*)
- 77% of total discharge (*based on 3-component mixing model from chemical isotopic tracers*), with

6% from unconfined aquifer

71% from confined aquifer

- Point measurements agree with reach-scale measurements <u>and</u> add additional information
 - LC3: 151.12 L m⁻² d⁻¹ mean, 0.76 coefficient of variation
 - LC6: 188.12 L m⁻² d⁻¹ mean, 1.06 coefficient of variation
 - LC11: 12.35 L m⁻² d⁻¹ mean, 0.57 coefficient of variation

Special thanks to:

Steve Frenzel, Dan Long, Ty Ferré, Stan Leake for their support and encouragement
Ann Marie Larquier, Charles Grammer, and Shamariah Hale for excellent field assistance

Funding provided by:

